Honors CCGPS Analytic Geometry Review - Basics of Geometry Unit 1

1. If an ∠ measures 68° 28′ 14″, what's the measure of its complement and its supplement?

2. The measure of an angle is 4 times the measure of its complement. What's the supplement of the angle? Y - W X

90-1 = its comp.

$$X = 4(90-x)$$

 $X = 360 - 4x$
 $14y + 18$

180-72 = 108°

Fill in the blank:

3. If 2 angles are complementary, then they both have to be

5. The supplement of an obtuse angle has to be ____a c vte___

8x	+12 = 10x=1	6
-8x	- Six	,
1'	$2 = 2 \times -18$	
4000000	28-7x	
***	14 = x	

8. AB \perp CD. The measure of \angle 4 and \angle 5 are in the ratio 7:5.

What are the measures of $\angle 4 \& \angle 5$?

$$7x+5x = 90$$
 $12x = 90$
 12×7.5

9. Find the measure of all 4 angles in the diagram below:

$$x^{2}+18 = -8x+6$$
 get 7ero on
 $+8x-6$ one side
 $x^{2}+8x+12 = 0$
 $(x+6)(x+2)=0$
 $x+6=0$ $x+2=0$ Poth
 $x=-6$ $x=-2$ values are valid

10. $\angle R = 132^{\circ}$. $\angle R$ is bisected, then one of the resulting angles is trisected. What's the measure of one of the smallest angles?

132/2 = 66 - 122

- 11. each other.
- 12. One of 2 supplementary angles is 4 more than twice the other. What is the measure of the What's the measure of the complement of the angle?

there is no complement! gmaller & X+Zx+4=180 The & is 180-58-7. The measure of the supplement of an angle plus the complement of the same angle is 168°.

13. What's the measure of the original angle?

(180-x)+(90-x)=168270 - 2x = 168

Use the diagram at right. Find x & y. 14.

Given: AB \perp BD X+70+Y+10=90

 $\angle ACB = x + y$ X+Y = 60 $\angle BCD = 2x + 4$

 $\angle ABC = x + 20$

X+Y + 2x+4 = 180 $\angle BCD = y + 10$

3x+ y+4 =180 CBD

3x + y = 176

> X+Y = 60

- AB = 24, AD = 14, $\overline{AD} \cong \overline{CB}$ 15. CD = 4
 - AC = 10 14-4 DB = 10

16.

14

19.

Given: $\angle E \cong \angle EGF$, $\angle I \cong \angle HGI$

Prove: $\angle E \cong \angle I$

Statement	Reason	
1. XE = XEGF XI = X HGT	1. Given	
2. XEGF = XIGH	2. Vertical Angles Thm	
3. ∠E ≅ ∠I	3. Substitution	

20. Given: $\angle 2 \cong \angle 3$

Prove: $\angle 1 \cong \angle 4$

Statement	Reason
1. ¥2≥ ¥3	1. Given
2. ∠1 Suppl to ∠2 ∠3 Suppl to ∠4	2. Linea Pairs
3. X 2 4	3. Congruent Supplements Thm